Copyright © 2007 Terabit Enterprises Pty Ltd. All rights reserved.
The IOTerabit Framework

1The IOTerabit Framework

11.
General notes

12.
IOTerabit asynchronous framework

22.1.
IOThreadPool

32.2.
WkThreadPool

32.3.
AsynchChannel

42.3.1.
AsynchChannel state

42.3.2.
read control

52.3.3.
write control

62.3.4.
close

62.3.5.
buffer management

62.4.
AsynchChannelFactory

62.5.
ChannelManager

72.6.
Protocol

82.6.1.
on_channel_opened

82.6.2.
on_channel_closed

82.6.3.
on_read_completed

92.6.4.
on_write_completed

92.6.5.
on_timeout

92.6.6.
check_activity

102.7.
ProtocolFactory

102.8.
ChannelAcceptor

102.9.
ChannelConnector

113.
Usage example

1. General notes
Framework dependencies

· ACE (http://www.cs.wustl.edu/~schmidt/ACE.html)

· Tproactor (http://www.terabit.com.au)

Supported platforms:

All platforms supported by TProactor and ACE
2. IOTerabit asynchronous framework

The IOTerabit designed as a level of abstraction on top of the TProactor framework
with the purpose of reducing the complexity of multithreaded and network
programming. This framework shall free developers from the details of TCP/IP
programming, connection management, threading models and synchronization issues.
The framework actively uses technique of "object pooling" to avoid expensive memory allocations in case of processing thousand of connections.

The framework requires application programmer to develop custom protocols as
event-driven state machines.

The framework main components are:

· IOThreadPool – implements I/O thread pool with an event demultiplexor (TProactor) as a single entity. IOThreadPool provides thread space for all I/O completions.

· WkThreadPool – implements a consumer thread pool for the generic “producer-consumer” model. This component is optional and can be used in case if developer decides to process input messages in a separate background thread pool.

· AsynchChannel – interface that provides all I/O activities on TCP/IP streams and I/O completion handlers. One of the derived implementations is TCPAsynchChannel. The AsynchChannel is designed as a separate interface for possible future implementations: SSLAsynchChannel and pseudo-connection UDPAsynchChannel.

· AsynchChannelFactory – the factory interface for creation and destruction of AsynchChannel objects. Concrete factory implementations must be provided for all supported AsynchChannel implementations.
· ChannelManager – provides registration, control and management of all active connections. It also must provide pool/cache for AsynchChannels. It maintains collection of active and free channels. It also plays “watch dog” role to control AsynchChannel instances that has no activity for the specified period of time.

· Protocol – interface, defines contract between AsynchChannel object and concrete protocol handlers. Resposible for message parsing and processing. Should be implemeneted as event-driven state machine. Should be poolable, reusable object.

· ProtocolFactory – interface that is used by the framework to instantiate Protocol instances. Also it is a good place to keep free Protocols in the pool/cache for later reusability.

· ChannelAcceptor – asynchronously accepts incoming connections and provides creation AsynchChannel and Procotol objects with the help of ChannelManager, AsynchChannelFactory and ProtocolFactory.

· ChannelConnector – asynchronously establishes outgoing connections and creates AsynchChannel and Procotol objects objects with the help of ChannelManager, AsynchChannelFactory and ProtocolFactory.

To avoid expensive malloc()/free() or new()/delete() calls, especially when dealing with large connections numbers (thousands), a lot of objects should be reusable, i.e. able to be placed in a collection of reusable objects. Such objects are: AsynchChannel, Protocol and buffers (ACE_Message_Block) objects. To allow efficient, exception safe and zero-allocation pooling, any pool-able object must have link field to be included in intrusive collection. Such object can belong either to the active object list or to the free list.

2.1. IOThreadPool

The IOThreadPool is derived from the ACE_Task_Base class and responsible for:

· Creation and deletion of Proactor instance(s)

· Creation and deletion of threads providing thread space to run the Proactor event loop

· Running the Proactor event loop in a thread pool
From the point view of developer - IOThreadPool is a single entity: Proactor and a thread pool.

Any asynchronous I/O operation or timer is associated with one Proactor instance.

Important: Any asynchronous operation or timer can be initiated in any thread of the application, but the completion of this operation/timer is always delivered only in IOThreadPool associated with given Proactor.

The IOThreadPool must be created and activated before activation of any other component and deactivated after deactivation of any other component. This rule comes from the following: to delete any AsynchChannel, ChannelManager, ChannelAcceptor, ChannelConnector instances framework must make sure that all outstanding asynchronous operations and timers are finished or canceled, i.e. all completions have been received. But in order to receive completions framework must run Proactor event loop, i.e. IOThreadPool must be active.

2.2. WkThreadPool

The WkThreadPool is also based on ACE_Task_Base , but implements producer-consumer model. Each worker thread pool processes it own queue of jobs/items/messages. This component in optional and can be used in case if developer decides to process input messages in a separate, background thread pool.

2.3. AsynchChannel

The AsynchChannel instance is created by the framework every time an incoming connection is accepted or an outgoing connection is established.

Actually, AsynchChannel is an abstract class with a small set of pure abstract methods, application developer is not required to have knowledge of concrete implementations’, that are provided by the framework. This allows us to process tranparent TCP connections as well as SSL connections in exactly the same manner. Once an instance of concrete AsynchChannel object has been created, the framework will only access it through the abstract AsynchChannel interface. Therefore, the Protocol class does not depend on the implementation of the AsynchChannel object.

Derived implementation is TCPAsynchChannel, and possible future implementations of SSLAsynchChannel, UDPAsynchChannel. Implementing classes usually should override 6 virtual methods and should be should be poolable, i.e. reusable objects.

The AsynchChannel object:

· works in pair with a Protocol object, allowing separation of message parsing and processing from the management of the underlying stream (which can be a TCP stream, SSL stream or other source).

· provides initiation and queueing of all asynchronous operations (read/write/timer)

· handles completion of asynchronous operations, takes approriate actions in case of I/O errors and notifies the Protocol object of completions and other events.

· provides effiient buffering and takes care about buffer management. Buffers are taken on demand from the buffer pool and returned to the pool after I/O completion processing.

· supports auto-read mode. The data is read as soon as they become available. The application developer only specifies input buffer size and has ability to enable or disable read operation.
· takes care about proper sequence of write operations with the help of internal intrusive output queue. Queued data are sent as soon as previous write operation is completed. The AsynchChannel also takes care about partial write problem, i.e. if not all data were sent for the finished asynchronous write operation, unsent data will be automantically sent before other queued data.

· supports asynchronous timer. To avoid creation a lot timers and heavy system loading in case of thousand connections, it is allowed to have only one outstanding timer per AsynchChannel instance. Alternatively, the developer can use "check_activity" (“watch dog”) callback notifications to the Protocol object.

· provides connection statistic, logging of I/O activities and tracing of raw stream data.
· AsynchChannel objects are "intrusively" reference-counted objects and therefore they exist while the reference count is greater than zero. AsynchChannel keeps reference to itself while:

· it has any pending I/O operation or timer

· it has any not finished callback to the Protocol

· the method AsynchChannel::close() has not been called.

Only when all AIO operations and callbacks are finished and method close() has been called, the AsynchChannel releases self-reference.

Other objects can keep references to AsynchChannel as they need and release reference (i.e. decrement the reference count) when they are done with it.

When reference count goes to 0, the virtual method free() is called. The AsynchChannel::free() notifies associated ChannelManager instance to deregister the AsynchChannel object and put it into free list or delete it via call to AsynchChannelFactory::destroy_channel().

The main methods and states of AsynchChannel are described below:

2.3.1. AsynchChannel state

The AsynchChannel can be in one of the following states:

ST_INIT // BEFORE OPEN

ST_ACTIVE // OPERATIONAL, I.E ACTIVE

ST_CANCEL // CANCELATION ANS CLOSURE IN PROGRESS

ST_CLOSED // CLOSED
2.3.2. read control

int enable_read ();

int disable_read ();

Enables/disables reading from the channel.
Return value:

0
success

-1
failure, channel closed

void set_read_size (size_t size);

size_t get_read_size () const;

Sets/gets the read buffer size.

2.3.3. write control

int enable_write_notifications ();

Enables write notifications when all queued data is written.

Return value:

0
success

-1
failure, channel closed

int disable_write_notifications ();

Disables write notifications when all queued data is written.

Return value:

0
success

-1
failure, channel closed

int start_write (const iovec *iov, int iov_cnt);

Initiate write operation or queue the data to the output queue. The data will be copied, so on return the original data are no longer used by channel.

Parameters:

iov vector of buffers

iovcnt number elements in the vector.

Return value:

0 success

< 0 error, channel will be closed

int start_write (const char *data, size_t datalen);

Initiate write operation or queue the data to the output queue. The data will be copied, so on return the original data are no longer used by channel.

Parameters:

data address of data to write

datalen data length to write

Return value:

0 success

< 0 error, channel will be closed

int start_write (ACE_Message_Block& mb);

Initiate write operation or queue the data to the output queue. The ownership of message block will be taken by this channel regardless of return code. Therefore, the message block should be obtained via AsynchChannel::alloc_msg() method.

Return value:

0 success

< 0 error, channel will be closed

2.3.4. close

State close (bool flg_callback);

This method is called to force cancellation of all outstanding requests and close the channel.

Return value:

ST_CANCEL

Cancellation has been initiated and will be finished later. Upon finish the associated Protocol will be notified via Protocol::on_channel_closed () callback.

ST_CLOSED

cancellation is done. If the parameter flg_callback is false, the associated Protocol will not be notified Protocol::on_channel_closed() callback.

2.3.5. buffer management

virtual ACE_Message_Block *alloc_msg (size_t length);

Allocates message block for write operation in form:

int start_write (ACE_Message_Block& mb);

virtual void free_msg (ACE_Message_Block * mb);

Releases message block. Usually, the developer should not call this method.
2.4. AsynchChannelFactory

The AsynchChannelFactory is an abstract interface for classes that create AsynchChannel objects. It has two methods:

virtual AsynchChannel* create_channel ()=0;

virtual void destroy_channel(AsynchChannel *)=0;

It is assumed that only the ChanneManager will use and know about AsynchChannelFactory.

The first method is called by the framework when an incoming connection is accepted (Acceptor case) or an outgoing connection is established (Connector case).

The second method is called by the framework when it detects that AsynchChannel object is no longer needed and should be destroyed.

2.5. ChannelManager

The ChannelManager provides the overall management of AsynchChannel objects.

ChannelManager is responsible for creation and registration of AsynchChannel objects.

The ChannelManager maintains two collections: the collection of active AsynchChannels and the collection of free AsynchChannels instances.

The ChannelManager receives a reference to the AsynchChannelFactory object at construction time.

To get a new channel, the ChannelManager first attempts to get it from the pool. If pool is empty, it delegates AsynchChannel object construction to the appropriate AsynchChannelFactory::create_channel() method and then inserts newly created AsynchChannel object into internal collection of active channels.

When AsynchChannel object is no longer active, it notifies its ChannelManager, which then removes the AsynchChannel object from its collection of active connections and saves it in the free list for later reuse. The AsynchChannelFactory::destroy_connection() method is called if free list contains more unused objects than necessary and during application termination.

Therefore, the ChannelManager has knowledge about all active connections and periodically checks the "health" of each AsynchChannel instance. The ChannelManager has the "watch dog" timeout property. When time interval specified by this property has expired, the ChannelManager iterates over the collection of active connections and executes AsynchChannel::check_activity() method to check connection activity and state. What happens during this check is left up to the AsynchChannel object. For example, AsynchChannel implementation class could compare current time and time of last I/O operation and initiate connection termination if the time difference is greater than some preset value.

Upon receipt of a stop request, ChannelManager prohibits creation of new AsynchChannels and initiates termination of all existing AsynchChannels. The ChannelManager also provides wait() method which allows a caller to detect when all connections are terminated.

The ChannelManager accumulates connection statistics that can be used for performance evaluation.

2.6. Protocol

The Protocol is another abstract class. While AsynchChannel object implementations are provided by the framework, the Protocol implementations should be developed by the framework user. Once a concrete Protocol implementation has been developed, it will work with any underlying type of AsynchChannel object.

The Protocol implemetation object:

· is created after the successful initialization of a AsynchChannel object

· is created through call to the ProtocolFactory::create_protocol() method
· works in pair with an AsynchChannel object and perfoms application-specific message parsing and processing

· delegates all I/O and timer operation initiations to its associated AsynchChannel object

· handles notifications from the AsynchChannel object as signals for its state-machine.

· The Protocol developer is obliged to override the following pure virtual methods (Protocol's notifications):

· on_channel_opened
· on_channel_closed
· on_read_completed
· on_write_completed
· on_timeout
· check_activity
· These methods are declared as private, so the Protocol implementation itself can not call them, although it must implement them. They are called by the framework - by the friend class AsynchChannel.

· Therefore, Protocol is forced to work as event-driven state machine, where the Protocol methods above play the role of state machine signals. The framework keeps track of the actual state of the AsynchChannel. The Protocol drives and responds to state changes.

The Protocol methods are described below:

2.6.1. on_channel_opened

virtual int on_channel_opened (AsynchChannel *channel);

This method is called when a new connection AsynchChannel is attached to the protocol. It is the first method that is called after the Protocol object has been constructed or taken from the pool of free Protocols. It can be considered to be the state machine initialization function.

The Protocol receives as a parameter pointer to the associated AsynchChannel object.

Protocol can use this pointer till notification on_channel_closed.

Return values:

 >= 0 success,

 < 0 failure and on_channel_closed () will be called next

2.6.2. on_channel_closed

virtual void on_channel_closed (AsynchChannel *channel);

This method is called when framework detects that the attached AsynchChannel is closed and about to be destroyed. The AsynchChannel is closed when the connection is broken and it no longer makes sense to work with it. Also AsynchChannel can be closed explicitly via method close (). In both cases, framework notifies the Protocol about the channel closure via on_channel_closed method. This is the last method that is called by framework to the Protocol object. After this method has been called, the Protocol should never use this AsynchChannel object. This method can be considered part of the transition to the final state, and it can be called at any point in time.

2.6.3. on_read_completed

virtual int on_read_completed (AsynchChannel *channel,

 const char *data,

 size_t length);

This method is called when the asynchronous read operation on the associated AsynchChannel is finished. The AsynchChannel automatically initiates next read operation after the previous is finished. To prevent AsynchChannel from reading data, the developer can use AsynchChannel::disable_read(). To allow reading from AsynchChannel, it is enough to call AsynchChannel::enable_read().

Parameters:

data - address of buffer containing data

length - the length of data

Return values:

>= 0

success, continue state machine. The returned value must contain the number of bytes that has been consumed from the 'data' buffer and must be equal or less than 'length'.

< 0

failure and on_channel_closed () will be called next

2.6.4. on_write_completed

virtual int on_write_completed (AsynchChannel *channel);

This method is called all queued write operations are finished, i.e. output queue is empty and there are no more pending write operations.

This method is called only if AsynchChannel works in mode MODE_WRITE_NOTIFICATIONS. The developer can control write mode via methods AsynchChannel::enable_write_notifications () and AsynchChannel::disable_write_notifications ().

Return values:

>= 0 success , continue state machine

< 0 failure and on_channel_closed () will be called next

2.6.5. on_timeout

virtual int on_timeout (AsynchChannel *channel,

 const void *arg);

This method is called when when previously started asynchronous timer is expired.

Paramters:

arg - has the same value that was passed to the AsynchChannel::start_timer () call.

Return values:

>= 0 success , continue state machine

< 0 failure and on_channel_closed () will be called next

The default implementation returns 0.

2.6.6. check_activity

virtual int check_activity (AsynchChannel *channel,

 const ACE_Time_Value& last_op_time);

This method is called when inactivity timeout is expired. It is periodically called on expiration of framework's "watch dog" interval.

Parameters:

last_op_time contains the time of completion of the last I/O operation on the channel.

Return values:

>= 0 success , continue state machine

< 0 failure and on_channel_closed () will be called next

The default implementation returns 0.

2.7. ProtocolFactory

ProtocolFactory is abstract interface designed for creation of Protocol objects. It has two methods:

virtual Protocol * create_protocol() =0;

virtual void destroy_protocol (Protocol * protocol)=0;

The first method is called by the framework when a newly created AsynchChannel object is activated.

The second method is called by the framework when it detects that the Protocol object is no longer used and should be destroyed.

2.8. ChannelAcceptor
1. ChannelAcceptor's constructor takes three parameters:

· a reference to IOThreadPool object (where asynchronous accepts will occure)

· a reference to ChannelManager object

· a reference to ProtocolFactory object

2. An ChannelAcceptor is activated via the start() method. Acceptor::start () accepts two parameters: address to listen and the number of initial accept operations.

3. On activation ChannelAcceptor creates a socket, binds it to its given listen address and issues required number of asynchronous accept operations.

4. Incoming connections wake up the Proactor and complete a pending asynchronous accept operation. A new socket along with error code is placed in an asynchronous result object.

5. Proactor notifies the ChannelAcceptor of completion via the handle_accept() callback method. A reference to the asynchronous result object is passed as a parameter.

6. The ChannelAcceptor calls the ChannelManager in order to create and register the AsynchChannel object. The ChannelManager creates a new AsynchChannel object from the AsynchChannelFactory. The AsynchChannelManager registers the AsynchChannel object .

7. ChannelAcceptor passes ownership of newly accepted socket to the AsynchChannel object, then provides the AsynchChannel object with a ProtocolFactory and activates it. At this point, the AsynchChannel object starts its "own life".

8. The ChannelAcceptor starts a new asynchronous accept opeation. The working cycle continues.
2.9. ChannelConnector
1. The ChannelConnector constructor takes two parameters:

· a reference to IOThreadPool object(where asynchronous accepts will occure)

· a reference to ChannelManager object

· a reference to ProtocolFactory object
2. To establish a connection with a ChannelConnector, call the Connector::start() method, which has a parameter address to connect to.

3. A ChannelConnector creates a socket and issues an asynchronous connect operation

4. When a connection is established, the Proactor completes a pending asynchronous connect operation. A new socket and an error code is placed in an asynchronous result object.

5. The Proactor notifies the ChannelConnector of completion via its handle_connect() callback method. A reference to the asynchronous result object is passed as a parameter.

6. The ChannelConnector calls AsynchChannelManager in order to create and register the AsynchChannel object.

7. AsynchChannelManager creates a new AsynchChannel object from AsynchChannelFactory. The AsynchChannelManager registers the new object and returns it to ChannelConnector.

8. Connector passes ownership of newly accepted socket to the AsynchChannel object, then provides it with the ProtocolFactory and activates it. At this point, the AsynchChannel object starts its "own life"

3. Usage example

/***

** Copyright (C) 2003 Terabit Pty Ltd. All rights reserved.

**

** @file ex1.cpp

**

**

** This program illustrates the usage of IOTerabit framework

** Echo-Client and Echo-Server work in the same thread pool.

**

** @author Alexander Libman <libman@terabit.com.au>

**/

#include "test_config.h"

#include "Cfg.h"

#include "TcpChannel.h"

#include "ChannelManager.h"

#include "ChannelAcceptor.h"

#include "ChannelConnector.h"

#include "ProtocolFactory_T.h"

using namespace Terabit;

using namespace std;

static TestCfg cfg;

static ACE_TCHAR complete_message[1024] =

 ACE_TEXT ("GET / HTTP/1.1\r\n")

 ACE_TEXT ("Accept: */*\r\n")

 ACE_TEXT ("Accept-Language: C++\r\n")

 ACE_TEXT ("Accept-Encoding: gzip, deflate\r\n")

 ACE_TEXT ("User-Agent: P_Test /1.0 (non-compatible)\r\n")

 ACE_TEXT ("Connection: Keep-Alive\r\n")

 ACE_TEXT ("\r\n");

static ACE_TCHAR header [] =

 "\r\n====== begin of data===\r\n";

static ACE_TCHAR trailer [] =

 "\r\n====== end of data===\r\n";

// ***

// Receiver - server side protocol

// ***

class RcvProtocol : public Protocol

{

public:

 RcvProtocol(ProtocolFactory& factory)

 : Protocol (factory)

 {

 }

 virtual ~RcvProtocol()

 {

 }

 virtual void reset ()

 {

 }

 virtual int on_channel_opened (AsynchChannel *channel)

 {

 // just for demo, auto read enable by default

 channel->enable_read ();

 return 0;

 }

 virtual int on_read_completed (AsynchChannel *channel,

 const char *data,

 size_t length)

 {

 iovec iov [3];

 iov[0].iov_base = (char *) header;

 iov[0].iov_len = sizeof(header);

 iov[1].iov_base = (char *) data;

 iov[1].iov_len = length;

 iov[2].iov_base = (char *) trailer;

 iov[2].iov_len = sizeof(trailer);

 if (channel->start_write(iov, 3) != 0)

 return -1;

 return length; // all data consumed

 }

 virtual int on_timeout (AsynchChannel *channel,

 const void *arg)

 {

 return -1; // just for demo

 }

 virtual int check_activity (AsynchChannel *channel,

 const ACE_Time_Value& last_op_time)

 {

 return 0; // just for demo

 }

};

// ***

// Sender – client side protocol

// ***

class SndProtocol : public Protocol

{

public:

 SndProtocol(ProtocolFactory& factory)

 : Protocol (factory)

 {

 }

 virtual ~SndProtocol()

 {

 }

 virtual void reset ()

 {

 }

 virtual int on_channel_opened (AsynchChannel *channel)

 {

 channel->enable_read (); // this is default

 channel->enable_write_notifications (); // this is not

 return this->on_write_completed (channel);

 }

 virtual int on_write_completed (AsynchChannel *channel)

 {

 // start next write after previous finished

 return channel->start_write(complete_message,

 sizeof(complete_message));

 }

 virtual int on_read_completed (AsynchChannel *channel,

 const char *data,

 size_t length)

 {

 return length; // all data consumed

 }

 virtual int on_timeout (AsynchChannel *channel,

 const void *arg)

 {

 return -1; // just for demo

 }

 virtual int check_activity (AsynchChannel *channel,

 const ACE_Time_Value& last_op_time)

 {

 return 0; // just for demo

 }

};

// ***

// ProcotolFactories – ready to use templates

// ***

typedef ProtocolFactory_T<RcvProtocol> RcvFactory;

typedef ProtocolFactory_T<SndProtocol> SndFactory;

// ***

// core of server

// ***

int

run (int argc, ACE_TCHAR *argv[])

{

 int rc = 0;

 // factory for TcpChannels

 TcpChannelFactory channel_factory;

 // IO Thread Pool for Channels, Acceptors, Connectors

 IOThreadPool task1 ("IOThreadPool-1", // name for logging

 cfg.proactor_type (), // proactor type

 cfg.leader_type () , // shared | dedicated

 cfg.demultiplexors (), // number or proactors

 cfg.max_aio_operations (), // max num aio or 0

 cfg.sig_num ()); // for legacy

 // Channel Manager

 ChannelManager manager("Manager", // name for logging

 task1, // IOThreadPool for channels

 channel_factory, // factory of channels

 cfg.connections()); // message block initial pool size

 ACE_Time_Value timeout (cfg.timeout(), 0);

 manager.set_timeout (timeout); // set check timeout

 manager.set_log_level (cfg.loglevel()); // set log level

 manager.open (); // open manager

 // Protocol Factories (user supplied)

 RcvFactory r_factory ("RcvFactory", // name for logging

 cfg.loglevel ()); // log level

 SndFactory s_factory ("SndFactory", // name for logging

 cfg.loglevel ()); // log level

 // Acceptor

 ChannelAcceptor acceptor (task1, // IOThreadPool for accepting

 r_factory, // factory of protocols

 manager); // channel manager

 // Connector

 ChannelConnector connector (task1, // IOThreadPool for connecting

 s_factory, // factory of protocols

 manager); // channel manager

 acceptor.set_log_level (1); // cfg.loglevel ());

 connector.set_log_level (1); // cfg.loglevel ());

 ACE_INET_Addr listen_addr (cfg.listen_port ());

 ACE_INET_Addr connect_addr (cfg.connect_port (),

 cfg.connect_host ());

 // start with IOThreadPool with N threads

 if (task1.start (cfg.threads ()) != 0)

 {

 return -1;

 }

 // start listen

 if (acceptor.start (listen_addr, 10) == 0)

 {

 rc = 1;

 }

 // start M client connects

 for (u_int i = 0; i < cfg.connections (); ++i, ++rc)

 {

 if (connector.start (connect_addr, (const void *) i) != 0)

 {

 break;

 }

 }

 if (rc > 0)

 {

 char c;

 cout << "\nEnter any key to quit=>" << flush;

 cin.clear ();

 cin >> c;

 }

 ACE_DEBUG ((LM_DEBUG,

 ACE_TEXT ("(%t) ******** Before Cancel And Wait *************\n")

 ACE_TEXT ("Acceptor: PendingOP=%d Connector: PendingOP=%d\n"),

 acceptor.get_pending_count (), // number_pending_accepts

 connector.get_pending_count () // number_pending_connects

));

 manager.print_statistic ();

 // Initiate cancelation of all pending AIO

 acceptor.cancel (); // Cancel Acceptor

 connector.cancel (); // Cancel Connector

 manager.close (); // Cancel all active connections

 acceptor.wait (); // Wait for Acceptor

 connector.wait (); // Wait for Connector

 manager.wait (); // Wait for termination of all active connections

 ACE_DEBUG ((LM_DEBUG,

 ACE_TEXT ("(%t) ******** After Cancel And Wait *************\n")

 ACE_TEXT ("Acceptor: PendingOP=%d Connector: PendingOP=%d\n"),

 acceptor.get_pending_count (), // number_pending_accepts

 connector.get_pending_count () // number_pending_connects

));

 manager.print_statistic ();

 ACE_DEBUG ((LM_DEBUG,

 ACE_TEXT ("(%t) Stopping Thread Pools\n")));

 task1.stop ();

 return 0;

}

int

ACE_TMAIN (int argc, ACE_TCHAR *argv[])

{

 if (cfg.parse_args (argc, argv) < 0)

 return -1;

 // very important for POSIX, NO-OP for Windows

 BaseThreadPool::disable_signal (ACE_SIGRTMIN, ACE_SIGRTMAX);

 BaseThreadPool::disable_signal (SIGPIPE, SIGPIPE);

 BaseThreadPool::disable_signal (SIGIO, SIGIO);

 int rc = run (argc,argv);

 return rc;

}

